i Form Approved

REPGRT DCCUMENTATION PAGE OMB No. 0704-0188

teiite

wciuaing suagestions for reducing this buraen, 1o Washington Headquarters Secvices, Directorate for C
wae, Sur2 zzul:_t.fr:.—.i;t%n. A 22202-3302. and 10 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, 0C 20503.

: i i i i i instructions, searcning existing data sources.
men ‘nr <his cenecuon of :nformation s estimated to avérage 1 hour per respanse, including the time for reviewing i) g ¢

k< n & i nd reviewina the collection of information. Send comments regarding this burden estimate or any other aspect o thrs
g R o foy reduting 1 e o Wit e?or Information Operations and Reports, 1215 Jeffersor

T AGEHCY USZ ONLY {Leave biank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
14 March, 1995 - Final: 5/20/94 - 10/19/94
{Z. JITLE AND SUBTITLE ' S. FUNDING NUMBERS
A Study of Computational Requirements for Problems . G: NO001494-1-0804

in Pattern Recognition

S5, AUTHCRLS)

" Nelson Morgan, Jerome Feldman

7. CEAFORMING CASANIZATION AND ADDRESS(ES 8. PERFORMING ORGANIZATION
7 FERFORMI c CAGANIZATICN NAME(S.) s.() B MBER
International Computer Science Institute
1947 Center St., Suite 600 1-25-01

Berkeley, CA 94704-1198

TIRTETN T ST SRNG SCiNCY NAME(S) AND ADDRESS(ES 10. SPONSORING / MONITORING
. FONSTRING MUNITGRING AGENC <) ®s) AGENCY REPORT NUMBER
Dept. of the Navz

Office of Naval Research 4330/11 ONR 247

. Seattle Regional Office
- 1107 NE 45th St., Ste. 350

_ Seattle, WA 98105-4631

T, IUFSLEMEIITARY MCTEIS

12b. DISTRIBUTION CODE

Bpproved for public release;
Distribuiion Unlimited

o ian ok

130 ABSTRACT (Meximum 260 words)

During the contract period we:

1. Considered connectionist computation, particularly asit has been used for
: applications in speech recognition, and developed perspectives on machine
requirements for this task. '

2. Analyzed the computational requirements for image understanding tasks, particu-
larly "in the context of the developing Arpa Image Understanding Environment.

3. Studied the relevance of object—ori—ent'ed simulation software for these tasks.

A a s hnh e AR

15. NUMBER OF PAGES
7

{14, SUSJECT TEAMS

connectionist computation

. i ; . : DE
object-oriented simulation software 16. PRICE €O

. speech recognition
T TILr LALIFICATIOHN

1 oL
i tanaT 17 cf THIS PaGs OF ABSTRACT

SAR

18, SECURITY {LASSIFICATION 19. SECURITY CLASSIFICATION {20. UMITATION OF ABSTRAY

1

Accesion For

Final Report: A Study of Computational| NT!S CRA&)g

. DTIC TAB
Requirements Unannounced 0l
. - Justification
for Problems in Pattern Recognition
By
Nelson Morgan and Jerome Feldman Distribution/

International Computer Science Institute

ilability Codes
1947 Center Street Availabtiity

Avail and/or
Berkeley CA 94704 Dist v Special
March 14, 1995 ‘

v

1 Introduction

This report summarizes the work performed under ARPA/ONR grant N00014-
94-1-0804. During the contract period we:

1. Considered connectionist computation, particularly as it has been used for

applications in speech recognition, and developed perspectives on machine
requirements for this task.

2. Analyzed the computational requirements for image understanding tasks,

particularly in the context of the developing Arpa Image Understanding
Environment.

3. Studied the relevance of object-oriented simulation software for these tasks.

This is the summary report of the findings of these studies.

2 Project Summary

We have studied a number of pattern recognition applications to determine what
features are required for a scalable accelerator system that is specialized for
such applications. We believe that it is possible to develop a family of hardware
and software tools that can range from single chip accelerators to stand-alone
specialized super-computers for these tasks. Our past focus has primarily been
on connectionist algorithms, but we also have included a number of algorithms
that are not traditionally expressed in this way, such as dynamic programming.

A

{51012 046

System level hardware and software support requirements have been examined
for a number of aspects of spoken language processing and vision. The potential
for these capabilities already exists in the CNS design that we have been working
on, but we felt that it would be helpful to further examine such requirements,
both for our own design and for the future designs of other machines.

Specialized hardware has suffered from its inability to do all the computa-
tions needed for an application. This often leads to poor performance on the
complete task despite very good speed on some subtasks. We have studied the
utility of incorporating a RISC core on the signal processing chip to increase
the range of tasks that can be accelerated. We have investigated the need
for non-multiply-accumulate vector routines for vectorized nonlinear functions,
and have in particular considered the application tos image understanding. To
support users with a wider range of applications, the need for object-oriented
simulation software has also been further examined.

3 Applications

It is difficult to design a parallel machine to be equally effective for all appli-
cations. Ideally the design team would carefully examine proposed tasks and
determine what features were required to optimize performance (within cost
constraints) for the target applications. Unfortunately, for many cases there
is a “chicken and egg” problem; that is, the optimum computer cannot be de-
signed until we have experience with the application, but we cannot gain this
experience until we have a machine that can run the application efficiently.

A feasible solution to this dilemma is to observe the requirements for smaller
tasks that we believe to be similar to our end goals, as well as to analyze those
cases which have no good working precedent. A machine is then designed to
perform well on both sets of these problems. Iterations of this process should
result in better solutions both at the algorithmic and architectural levels.

We have considered a number of application targets for this study. These
range from obvious extensions of tasks we have run on parallel computers at
ICSI through bona fide applications that have never been implemented on fast
hardware. In addition, we have looked at abstract target applications that
we believe to be representative of classes of problems which have withstood
conventional analysis.

3.1 Connectionist Processing

We emphasized two sample subproblems which were required for a number of
connectionist applications, but which in particular were necessary for our use of
networks for phonetic probability estimation:

1. A general mechanism for fast implementation of nonlinear functions; in
particular, the log of the sum of two exponentiated values. This function
is used in a number of ways, including the Viterbi (dynamic programming
with log probabilities) and the softmax function that is often used at the
output of the network probability estimator.

2. Fast approaches to workstation implementation of the neural network re-
call phase. While training is still sufficiently computationally intensive
to require specialized hardware for the size of multilayer perceptrons we
are using in speech recognition, it should be possible to streamline the
recognition code so that it can be done on a modern workstation without
the aid of accelerators. Furthermore, such code would be a more honest
benchmark for comparison with specialized hardware, since the latter is
almost always made acceptably efficient through the use of very specialized
software.

3.1.1 Nonlinear function approximation

The family of designs that we have been developing in the CNS-1 project, based
on the Torrent architecture, can support almost any function taking a single
16-bit fixed-point input and returning a 16-bit fixed-point output. Inputs and
outputs must each be over a fixed range, meaning that the binary points of the
input and outputs must be in particular locations for a given function imple-
mentation. (Pseudo-floating-point is not feasible.) Functions are represented
as a sequence of line segments (that is, piece-wise linear). An entire function
is encoded in a table of 8192 bytes. For “well-behaved” functions, the error is
usually better than 1 ulp (unit in the last place) of the function result - typi-
cally the error is around 0.8 ulps. This error increases for functions whose slope
exceeds about +/-64 (relative to the input and output scale), or whose second
derivative exceeds about +/-128 (again, relative to the input and output scale).

For example, using the table representation, one can easily implement an
arctangent function having fixed-point inputs over the range -32 to +32 and
outputs between -pi/2 and +pi/2. A square root function, on the other hand,
is inherently problematic because the slope and curvature are both infinite at
0. (A table can be used to code most of the square root function, with special
case code taking care of small inputs, however.)

Construction of a function table is made trivial by two library routines:
The first takes a double-precision floating-point function as input and returns
a table giving a piece-wise linear representation of an equivalent 16-bit fixed-
point function. The second library routine takes both of the above as inputs
and calculates the worst-case error exhibited by the approximation. Another set
of library routines perform function evaluations through lookups in the table.
Both scalar and vector lookups are provided. Using the library lookup routine,
vector fixed-point function evaluation requires only about 1 cycle per element
for long vectors.

Taking advantage of this environment, we implemented fast scalar and vec-
tor fixed-point library routines for calculating exp(x) and log(exp(x)+exp(y)).
The table-based functions described above do not implement these library func-
tions directly: obviously, log(exp(x)+exp(y)) requires more than one input, and
both functions are evaluated to more than 16 bits, in fact. Table-based 16-bit
functions are used internally, however. Consquently, the vector library routine
for each of these functions takes about 2 cycles per element for long vectors.

3.1.2 Fast C matrix-vector libraries for workstations

Most of our neural network application code is written using either ANSI C
or C++, and a significant number of the most time consuming portions of the
code can be described in terms of well known linear algebra operations such as
matrix-matrix multiply.

Generating efficient code for commercial cached RISC architectures from

naive matrix-vector operations coded in C is difficult, and while some recent re-
search compilers have made significant progress, commercial C/C++ compilers
often give disappointing results. The C language presents considerable barriers
to memory aliasing analysis through its use of unrestricted pointers as array
indices. This limits the extent to which even sophisticated C compilers can
improve performance without explicit user annotation (pragmas).

An alternative approach to achieving portable high performance is through
the use of standard matrix-vector libraries. If a portable interface is defined,
specific library implementations can optimize these basic operations for a given
architecture, and can use hand assembly coding or other high performance lan-
guages. A further major benefit from the use of standard library routines is that
code development and maintenance is simplified, since now large pieces of code
can be reused from a library. We are interested in the use of application specific
hardware to accelerate certain applications and the use of standard libraries can
significantly simplify the task of porting user code to new hardware.

In the numerical analysis community, which is dominated by use of the
FORTRAN language, a set of basic linear algebra subroutines (BLAS) has been
defined that captures the most important primitive operations in linear alge-
bra. System vendors often distribute carefully hand crafted assembler code to
implement these routines, but for certain machines such libraries may be non-
existent or expensive. Portable BLAS sources are available in FORTRAN, but
these cannot be used on systems without optimizing FORTRAN compilers or
without good code development tools for managing mixed C and FORTRAN
programs. Finally, while the BLAS library provides extensive functionality in
the fields of linear algebra, it lacks important functions required for our connec-
tionist research, such as various non-linear activation squashing functions.

We have begun work on a set of portable, high-performance, ANSI C li-
braries (PHIPAC). The intent is to provide portable ANSI C source code that
will yield excellent performance on various matrix-vector operations for ma-
chines containing pipelined and/or superscalar RISC processors with cached
memory hierarchies. The method we use is to hand write C code that explicitly
performs optimizations that unsophisticated compilers will not perform, and to
also perform optimizations that even sophisticated compilers cannot perform
without explicit code annotations. The most important optimizations we make
include global register allocation, loop unrolling, and various loop transforma-
tions for improved cache performance. We concentrate on providing higher
level restructuring, while relying on the machine’s native C compiler to perform
detailed instruction selection, register allocation, and instruction scheduling.

Initial results are encouraging. A portable C matrix-matrix multiply routine
has been written and tested on three separate workstation architectures. On a
Sparcstation-20/61 we achieved performance of around 42 MFLOPS with single-
precision matrices of rank 256, this represents 70% of peak performance for
this workstation. For comparison, a naive triply-nested matrix-matrix multiply
routine achieves roughly 9 MFLOPS on the same workstation. For an IBM

RS/6000 model 5690 workstation, we achieve performance of over 240 MFLOPS,
close to the 245 MFLOPS achieved by the IBM-supplied machine-specific ESSL
libraries, and roughly 90% of machine peak performance. On an older SGI
Indigo R4000 running at 100 MHz we achieved 25 MFLOPS representing 37%
of peak performance. Note that the combination of a smaller number of floating
point registers, and non-pipelined and long functional unit latencies makes it
difficult to saturate the floating point unit of the R4000.

We intend to continue development of this library and to make it publically
available.

3.2 Image Understanding

Accelerators have a long history in image understanding, but are almost always
limited to the lowest levels of the problem. The availablity of tightly coupled
systems, like our CNS design, permits accelration of the full range of computa-
tionally intensive image understanding tasks. We studied the requirements of
an automated vehicle task in detail and showed that all of the hard parts of the
computation can be speeded up significantly on the CNS architecture.

A second major investigation concerned computational geometry. Modern
image understanding systems use very sophisticated computational geometry
routines and these are quite different in kind from the image processing of early
vision or the statistical techniques used in other vision tasks. We established a
working relationship with the leaders of the Darpa effort on computational ge-
ometry for the Image Understanding Environment project and started to work
out their key computational requirements. At the end of this contract, these
requirements were still not fully specified, but it seemed clear that the CNS
architecture could accelerate the known requirements and similar tasks. Ac-
celerators for the full Image Understanding Environment will require a wide
range of capabilities and should be developed in close collaboration with the
application groups.

3.3 Object-oriented Software Support

It has been much easier to build accelerator hardware than to progam it effec-
tively. Our group has always developed software support in parallel with the
hardware and this has been one of the keys to our success. As parallel hardware
and accelerators are applied to ever more complex tasks, the role of software
support becomes even more important. As part of our study we examined the
software needs of advanced systems in speech and image understanding. We
concluded that the requirements are too complex to be met by fixed software
packages or special purpose simulators. However, the development of modern
object-oriented languages allows for the development of packages that can be
efficent in execution, easy to use and fairly easy to recongigure for additonal
tasks. Part of our work included detailed studies of mapping connectionist and

other computations to parallel hardware. We also studied the role of parallel
object-oriented languages in building flexible and efficient systems.

4 Conclusions

This was a relatively short study, but a number of things were quite clear to us
at its conclusion, including:

1. An architecture with an embedded RISC engine in addition to a fixed-
point vector coprocessor is potentially useful for a range of tasks beyond
the neural network training for speech that was our original principal task.
In particular, general capabilities for vector nonlinear function evaluation
and specific capabilities for image understanding tasks could be acceler-
ated with such an approach.

2. All such developments should be fairly compared with modern workstation
performance. In particular, accelerator hardware throughput is generally
specified for extremely tuned code, while general purpose machines are
usually characterized in terms of performance with non-optimized code.
We recently tested a commercial accelerator for neural networks on one
of our speech training problems and achieved only 4% of its rated peak
performance. A similar task was carefully coded for a workstation and ran
at 70% of its peak performance. It may well be true that extensive recoding
could bring back much of this lost performance, but such development
on specialized hardware can be time-consuming, and the experiments we
report above showed that this attention to code efficiency can also have
significant effects on workstation performance on target tasks. All of this
is not intended as an argument against specialized accelerators, but only
to caution that acceleration claims should be tested by comparison with
workstation code that has been similarly optimized.

3. The programming of accelerator hardware can be simplified by the use of
object-oriented techniques, though particular simulators or fixed software
packages are necessarily insufficient.

We now are proceeding to work on the development of further software
libraries to help in a host of applications such as the ones considered above.
Our own chip design has gone out for fabrication, so that we hope to soon be
doing research on this topic using the working silicon rather than the simulation.

